智算业务对网络的核心需求
智算业务关键应用场景和案例
(资料图片仅供参考)
智能计算是指利用人工智能技术和算法,对海量数据(维权)进行分析、处理和挖掘。智能计算已广泛应用于自然语言处理、图像识别、预测分析、金融科技和自动驾驶等场景。基于大模型在自然语言处理领域的出色能力,智能计算为机器翻译、文本分类、文本总结、文本创作、搜索助手、辅助编程、图像视频创作等应用场景提供强有力的技术支持。
智能计算已成为帮助企业提高效率、降低成本、打造核心竞争力所不可或缺的技术能力,其在金融和汽车行业的应用已经非常成熟。例如:
在金融行业:智能计算应用于风险管理和控制,辅助量化交易、信用评估以及趋势预测,帮助金融机构做出更明智的业务决策。
在汽车行业:智能计算为自动驾驶提供高效精准的感知与识别、行驶决策与规划、车辆控制与执行,并不断进行算法优化以提高自动驾驶的安全和可靠性。
金融风控与智能推荐
金融行业历来是数字化与智能化的先驱者,已经将人工智能技术广泛应用于各项业务中,包括智能风控、交易欺诈检测、智能客服、投资决策、信用评估、量化交易等。
金融风控是人工智能技术在金融行业中最典型的应用场景。通过大数据分析、机器学习等技术对金融交易、投资、借贷等活动进行风险识别、评估、控制和监测,对金融风险进行有效识别和预警,以保障金融机构和客户的资产安全,满足监管要求。
在金融风控领域,度小满拥有非常丰富的实践经验。度小满将大型语言模型(LLM)应用于海量互联网文本数据、行为数据、征信报告的解读,将小微企业主的信贷违约风险降低了25%。而且随着模型的迭代,大模型在智能风控上的潜力还会进一步释放。
除了智能风控领域,度小满基于生成式大模型自主生成新的数据、图像、语音、文本等信息,成为理财师、保险经纪人等金融行业从业人员的得力助手,帮助他们为客户个性化推荐理财、保险产品,大幅提升服务效率和服务体验。
自动驾驶
得益于人工智能技术,自动驾驶技术越来越成熟。自动驾驶的渗透率呈现逐步上涨的趋势。全球知名IT市场研究机构IDC发布的《中国自动驾驶汽车市场数据追踪报告》显示,2022年第一季度L2级自动驾驶在乘用车市场的新车渗透率达23.2%,L3和L4级自动驾驶的能力也越来越成熟。
在自动驾驶场景中,每车每日会产生T级别数据,每次训练的数据达到PB级别。大规模数据处理和大规模仿真任务的特点十分显著,需要使用智算集群来提升数据处理与模型训练的效率。
重庆长安汽车股份有限公司在智算领域进行了规模化实践,建设了全新的智能车云平台和专用智算中心。当前计算能力突破100亿亿次,支撑自动驾驶的算法自研、虚拟仿真、智能网联等数字服务。智能车云平台提供统一的基础网联、数字产品、AI决策分析、智能汽车大数据四大平台能力,为用户提供智能化、远程化、个性化的车辆服务,打造更加便捷、高效、安全的车辆使用体验。
现在送您60元福利红包,直接提现不套路~~~快来参与活动吧!